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Abstract

In this paper, a new analytical-engineering method of closed form solution about stress intensity factors
of shear modes for 3-D finite bodies with eccentric cracks is derived by means of the energy release rate
method and relevant given 2-D stress intensity factors. This method is both accurate and efficient. Hence a
complete series about useful new results of stress factors Kj; and Kj; can be obtained. © 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The 3-D stress intensity factors are very important controlling parameters in linear elastic
fracture mechanics. Exact solutions of the 3-D stress intensity factors can only be obtained for
infinite bodies with embedded cracks. There are several approximate methods of solution for finite
bodies, but unfortunately, all of them are very time-consuming. Therefore, there are very few
results about 3-D eccentric crack problems, especially for the case of shear modes.

In Wang et al. (1990a, b), new analytical-engineering methods to obtain the closed form solution
for stress intensity factors of mode I about eccentric cracks, and closed form solution for stress
intensity factors of mode II and III about non-eccentric cracks were advanced, respectively. In this
paper, the theory is extended, and a closed form solution about stress intensity factors of shear
modes for 3-D finite bodies with eccentric cracks is derived by means of energy release rate method.

The procedure of solution can be summarized as follows:
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(1) To determine the 2-D crack sliding and crack tearing displacements with given 2-D stress
intensity factors Kj; and Ky, respectively, by means of energy release rate method.

(2) To establish the modes of 3-D crack surface displacement by given 2-D ones, with condition
of displacement compatibility.

(3) To establish the relationship between 3-D stress intensity factors (K; and K;;) and generalized
3-D crack surface displacements by means of near field stress and displacement expressions.

(4) To determine the generalized 3-D crack surface displacement and the 3-D stress intensity
factors with energy release rate method.

For the convenience of understanding, the third and fourth steps are discussed at first, and then
the first and second ones.

2. 3-D stress intensity factors and crack surface displacement

Figure 1 shows a 3-D cracked body subjected to shear load. Two kinds of sections would be
introduced: transversal sections parallel to the x—y plane and longitudinal sections parallel to y—z
plane as shown in Fig. 2. It can be assumed that the crack surface displacement is along the same
direction with shear load acting on crack surfaces perpendicular to the y-axis and can be expressed
into the following pattern

w(x,z) = woihy (X, 2) +worhy (X, 2) (H
w?(x,z2) = wowo Hy(x, 2) )

where, /,(x, z) and h,(x, z) are symmetric and anti-symmetric distribution functions of crack surface
displacements corresponding to anti-symmetric and symmetric crack surface shear displacements,

Fig. 1. A three-dimensional finite body with eccentric crack.
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Fig. 2. The cross-section containing a eccentric elliptical crack.

respectively, w,, and wy, are the corresponding generalized crack surface displacements (ampli-
tudes) corresponding to 4,(x, z) and h,(x, z), respectively. Furthermore,

H(x,z) = hi(x,2)h;(x,z) 3)

where, H,(x,z) are products of distribution functions and which equals to zero along the crack
front and has second derivatives in the vicinity of the crack front.

It must be emphasized that H,; is a symmetric function when i = j, and H,; is an antisymmetric
function when i # j.

If P(x,, z,) is an arbitrary point on the crack front, then in the vicinity of point P, the square of
crack surface displacement w?(x, z) can be expanded into Taylor’s series, and the higher terms can
be neglected. So, we have

w2 (x,2) = wowy, {aali” (Xl’:])(x—xl)—k aal? (xm)(z—zl)}
=w(x,z;)+w(x,,2) 4)
w2 (X1, 2) = wo,Wy, {802” (2—21)} (%)
(x1.21)
w2 (x,z1) = wo,Wy, {681_1” o )(x—xl)} (6)

where, w(x, z,) is the anti-plane crack tearing displacement (CTD) of the transversal section, and
w(x,, z) is the in-plane crack sliding displacement (CSD) of the longitudinal section passing through
the same point P. Equation (4) can be called the Pythagorean theorem of the crack surface
displacement.

As shown in Fig. 3, a normal slice can be introduced, and the crack surface displacement can be
separated into two components: the in-plane CSD w-cosy and the anti-plane CTD w-sin. In
the vicinity of an arbitrary point P(x,, z,) on the crack front, the two components can be expressed
by means of corresponding stress intensity factors as follows:

K121 2 .2 2K1211
iy r, w”sin®y i r 7

w? cos? Y =
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Fig. 3. The crack surface displacement of a normal slice separated into two components.

8 K, 2K,
weosy = ;FH\/;’ wsinlp:ﬁ:]\/; (8)

where, E, is the generalized Young’s modulus of the normal slices and can be expressed by
following equality

E,=E+(E,—E)f(¥); E, = E/(1-v); f(¥)el0,1] €)
v is Poisson’s ratio, and u is the shear modulus

p= £ (10)
2(1+v)

For a plate with an embedded fully elliptical crack, every normal slice can be assumed in a state
of plane strain, then we have f(iy) = 1. For a plate with a surface semi-elliptical crack, the stress
state of the normal slice varies from plane stress at iy = 0 to plane strain at y = /2. So it can be
assumed that f(iy) = sin .

From eqns (7) and (4), it can be obtained that

i 0H;; . 2H;
Ki = — §E5W<an/- {avl siny + E"cos w}p cos® Y
T, o1 5
= gEn Wo;Wo, 11_{1;)1;[Hii(xszl)+Hi/’(xl’Z)] cos™ ¥ (11)
0H;; o0H;
K= — E,uzwo,wgi Ysiny 4+ —2Lcosy b sin? i
2 7| Ox 0z )
T, 1 -
= E,U WOiWOjllzlél;[Hij(xazl)+Htj(xlaZ)] SH (12)

So, Kj; and Ky can be obtained, if amplitudes wy, and products of distribution functions H;; are
determined.
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3. Basic differential equation

To determine the displacement amplitudes w,, the increment of potential energy dIT during
crack growth should be studied. According to the principle of superposition, the load acting on
the boundary of the body can be transferred onto the surface of the crack and can be expressed as
T = 148(x, z), where 7, is the generalized force, and s(x, z) is the load distribution function. The
potential energy of a linear elastic cracked body will be

IT = —J wwdAd = —tgnac{wy, B, +wg,B,}
A

= —1omacwy, B (13)

where, A is the crack area and

o

1
B, = f s(x,z)h(x,z)dA4
nac J4

1
B, = J s(x,z)hy(x,z)dA4
A

nac
B = B, +wy,B,/wq, (14)

The crack front is assumed to be elliptical with semi-axis @ and ¢ parallel to x and z axes,
respectively. To determine wy, and wy,, two kinds of virtual crack extension are considered, and
the increment of potential energy dII during crack growth should be studied.

(a) Proportional extension.
The virtual proportional extension of the crack can be expressed by
da = adg,, dc=cdy, (15)

as shown in Fig. 4(a).
Now, G is used to represent the energy release rate of an arbitrary normal slice with unit
thickness along crack front. It is well known that

E, 2

n

1 2 1 2
G=—Ki+ K (16)
u
Then, the energy release of the three-dimensional cracked body is

dIl = —JGdrds 17)

where, s is the crack front, dr and ds are used to represent the amount of crack extension and the
thickness of the normal slice, respectively. Then

ds = \/cz sin? ¢ +a” cos? ¢ dep, dr =(da)sin ¢ siny + (dc) cos ¢ cosy (18)
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¢ sing _ acos ¢
, cosy =

siny = 19
v J @ cos> g+ sin’ ¢ J@* cos> g+ sin’ ¢ (19)
In the above two equations, ¢ is the parametric angle of the elliptical crack front.

So, after substituting eqns (11), (12), (16), (18) and (19) into eqn (17), with consideration of the
symmetric and antisymmetric characters of H; and H, (i #j), dII will be transformed into

following pattern

dIl = —J Gdrds

27 rr JF 2o rrx J¥E
= —i; §E1W(2)iac {a+c}dg_1_z1 ZMWSiaC {a+ p }dg (20)
where
I*=ua E"limlH(x Ycos* yd
% — = —H.(x,z
i SEI 0 p ii\#Vs <1 @
E,0H,;
— _ ~n ii . 2 d
aJSEz I (x]’:])smxpcos Ydo
.1 .
I¥=a| lim - H,(x,z)sin"y do
=0
= _aJ, ox |, )sm3lpd<p
S X121
J¥=¢ ﬂlimlH--(xl z) cos® Y do
i ) EI r0 ii s
E,0H,; 3
= _cﬁEz oz |, —)cos Yde
3 A1s=1
o1 -
J¥E= ¢ hn&—Hﬁ(xl,z) sin” y do
0
= —cjaz cosy sin® Y do (1)
s (x1.21)

In the above equations, repetitions of subscripts do not mean summation with respect to it.
Taking the differential of (13) and comparing it with (20), the first differential equation about
wy; and wy, can be obtained.

8W01 1 0B 2 E, FJ¥ u [ x ¥
" Bag,)" ot v LT 2
agl +< +3591>W01 i; |:8TOB a T I +4T()B a + c Wy, ( )
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Fig. 4. Two kinds of virtual crack extensions.

(b) Rigid translation along the z axis.
The virtual rigid translation of the crack along the z axis can be expressed by
da=dc=0; df.=f.dg, (23)

as shown in Fig. 4(b).
With the same procedure as (a), the second differential equation about wy, and w,y, can be
established

g, B dg, Wor = 4tyB\ a ¢ 2t1yB\ a ¢ WorWoa' 24)

where,

E 1
M* :afl1mH12(x,zl)cosgocosztpdq)
SEI r—0 p

_ EnaHIZ
- JE) Ox

sin cos @ cos® Y do

(x1.21)

1
M** = aJ 1%;H12(x,zl)cos¢sin2 Yyde

0H
=—al| 2 sin®  cos ¢ do
ox |,
s (x1,21)
E, 1 5
N*=c | —lim—-H,,(x,,z)cospcos” Yy do
JE =0

cos® Y cosdpde

(x1.21)

_ EnaHIZ
- JE, oz
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1
N** = cJ 1irr01;H12(x1,z) cos @ sin” Y do

| 9Hy,
N CS 0z

Now, there are two non-linear differential equations (22) and (24) of first-order about wy, and w,,
and the closed form solutions of them are to be established.

cos Y cos ¢ sin® Y do (25)

(x1.21)

4. Closed form solution

Let
{ = woa/wo,
F =L+ T =T+ 0%
% = [T 0 = PR CJ*% (26)

After substitution, eqn (22) will be transformed into the following
09, B dg, Wor = 8tyB\ a ¢ 4tyB\ a c "

To obtain the closed form solution of wy,, two extreme cases are studied previously.
(1) a/c > 0. ¢ > 0. Let

% | *%  pEx i *%  PEE_ i o
I = <al,~5301 b= (al/’ggol o Ir= (z}/gEOI ’ (28)
B = (al/grlo B, Bu= (al,vggo By, Bi= (al/‘lcmo B )
Won = (al/ggo wor, &= Jggo (30)

From eqn (19) it can be seen that sinyy = 1 and cosy = 0, so that from eqn (21), we have
I¥F=0

In this extreme case, the crack can be considered as a through-width one, as shown in Fig. 5,
then

Fig. 5. Cracked section with a/c — 0.
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gn =0, 1*1*: I*;kh B, = By (31)
So, eqn (27) becomes a differential equation of Bernouli’s type. The solution is
1 g1 1 I*F .
— =B, _® 771672g1dg]*+A1 ,
Worlr 4ty |, B} a

1

A] =
Wor By

(32)

91=0

From the Appendix, it can also be obtained that
T a
W011=2;61F<Z,0> (33)

(2) ¢/Ja—0.a— . Let

% _ 1 % % _ 1 % % _ 1 %

JTu (}5130«]1, Vet (L,Jl/gﬂojza Jh (J}&I}»o‘] s (34)
By = ((-}gllo B, By = ((,}}1{1})0 B,, By= ((}31_1_0 B, (35)
Worn = (c}}z)nlo Wor, (n = (c%go g, (36)

From eqn (19), it can be seen that sinyy = 0 and cosy = 1, so that from eqn (21), we have
J¥¥=0.

In this case, the crack can be considered as a through-thickness one which is unsymmetric with
respect to the axis, as shown in Fig. 6, then

CII = C*, Jﬁ = JTH‘FC*ZJEKH BII = BlII+C*B2II (37)

where {* is the ratio of wy, and wy, in the case of 2-D through the thickness crack, and can be
found from the Appendix.
So, eqn (27) also becomes a differential equation of Bernouli’s type. The solution is

Fig. 6. Cracked section when c/a — 0.
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1 E, (91 J§
= e’ B ! o=20" qg* 4+ A
Worn H{ 87 L Blzl ¢ g ’

1
A, = 38
’ WoinBu g, =0 38)
From the Appendix, it can also be obtained that
T ¢ f.
Woinm = 0CF<b b) (39)
Let
2 2
R A T (40)
1 1
For the case of arbitrary a/c, an assumption of variable separation can be made as follows:
1+
c a t\2u I*I*+ 4 b H
=m|— |~ — +n
B’ ¢b)E, B} ¢ BII
2u fa t\I*}
= E ( b) B%I +n < > (Ji +C*2J211)/(B 1w+ By (41)

where m(a/c, t/b) and n(c/a, b/t) can be determined by least square method in symmetric cases. The
above assumption can be verified numerically.
After substitution, eqn (27) will be transformed into the following

0wg, (o L 1 0B _ B at 2,LLI>"”‘+ fé E Jil o, 42)
a9, Bag, )" T8, |"\evn)a g2 T et ) e m2 |

The above equation is a special case of classical Bernouli’s equation. The solution of eqn (42) is
1 1 [ t\ 2ul*¥ b\ E, J§ .
—— =B — — m (L), (22) e ¥dgt+A (43)
Wo1 876 J, ¢’ b) aB? c't)c B}

Whel‘e, A = (l/W()lB) |g:().
Comparing eqn (43) with (32) and (38), and considering the state function property of wy;, we

have
1 a t B N c b B
—=m|-,- nl—,-
Wo1 ¢ b)wynB a t)wonBy

B B
A= mA1 —I—nA2 (44)
BII

So, the closed form solution of wy, is obtained as shown in eqn (44).
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From (24), { will be equal to

o
09>, \wo, B
M*+ %M** N* 4+ %N**

E, E, + E, f
41,B? a c c

981

(45)

To simplify the expression of {, the above two extreme cases should be considered once more:

(1) a/c =0.

From eqn (45), we have,

5( ! )
09> \Won By

C1=
E, UET L
4ty Bi a ¢
(2) ¢/a—0.

From eqn (45), we have

5( ! )
09> \Wo1uBu

2p
E N+ E—IN*;';

41'03121 ¢

n =

N

(46)

(47)

Substituting eqn (44) into eqn (45), and considering eqns (46) and (47), it can be obtained that

t\ M, b\ N,
m<a.5> ICI+n<ca> .HCII
c’b) a a't] c

‘= M N
7+7
a c
where
M=M*+2f'uM** N=N*+2lN**
E, ’ E,

2u 2u
M, = Mi+ FM*ﬁ Ny = Nﬁ+FN*ﬁ

1 1

Substituting eqns (31) and (37) into (48), we have

(48)

(49)
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a
ab EN“
C=n<,>'53“ (50)
c’t a
M+EN

Finally, the closed form solution of wy; are obtained, as shown in eqns (44) and (50). If the
modes of the crack surface displacement are known, Kj; and Kj;; can be calculated from eqns (11)
and (12).

5. Modes of crack surface displacements

It can be assumed that, the symmetric and anti-symmetric modes of crack surface displacement
of each section about 3-D cracked body are the same as those of a corresponding 2-D cracked
plate with the same geometrical configuration and the same type of load distribution along the
crack surface, respectively, given in the Appendix.

Let A(x,, zo) be an arbitrary point in the crack area as shown in Fig. 7. If w,(z,, x) and w,(x,, z)
are 2-D crack surface displacements (shown in the Appendix) used to express the crack surface
displacements w(x, z,) and w(x,, z) of transversal and longitudinal sections about a 3-D cracked
body, respectively, then from (A43) and (A63) we have

W(X, ZO) =W (ZO:x)

3 L1 ) 1) R

w(Xy,2) = w,(x, 2)
et () (] <o ST

zZ\ V2 z
+ W22 (xX0) |:ﬁ2 (U)} Y (52)

SN

23

z

(x9.2)
Fig. 7. Transversal and longitudinal sections.

[
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where, wy,, is the generalized crack surface displacements of transversal section through point
A(x, z9). Wy, and wyy, are the generalized crack surface displacements of longitudinal section
through point 4(x,, z,) also for the symmetric and antisymmetric case, respectively. #, and f; can
be found from the Appendix, and we have

X x?
n =2, P <a> =1-—7, for embedded crack
a

n =4, p <x> =1-— E, for surface crack

a a
z Z2
n =2, p, . =1—C7 (53)

To satisfy the requirements about compatibility between crack surface displacements of trans-
versal sections and those of longitudinal ones along the x-axis and z-axis, the following equalities
must be valid

w,(z,0) = w,(0,2)
w, (0, x) = w,(x,0)

dztvl(z,X)

wy(x, z) (54)

z=0 dZ z=0

Substituting eqn (51) and eqn (52) into eqn (54), it can be obtained that

S G R e R
]t

Wo21(X) = wo, {nlal

(e
O ) 1) ) ) S N

Then, we have

(55)

~ |
~
l_\
N
Q| =
~
I_I
+
| —
)
|

=

R
N
~ |
~
I
=
N
Q=
~_
I

(5]

IS
—

wi(2,X) = wo i1y, (2,X) +worhi2(X, 2)
Wa(X,2) = wo1hay (X, 2) +Wworhar (X, 2) (57)

where,
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= o () (] oo ()16
e (o) Q)] e G 5) )
pute = o () ()= ()] () 3 )]
= () 6] 1o Gl I
(o) Lo B3]
ot = o () ) [romn ([ QT ()2 0

H[j(xa zy) = hy(x, z, )hlj(xa Zy)
Hij(xlaz) = hZi(xlaz)h2j(xlaz) (59)
hi(x,2) = [h(x,2) +hy(x, 2)/2 (60)

Substituting H;; and /, into the expressions of wy,, Kj; and Ky, the stress intensity factors Ky
and K;; can be obtained.

6. Results

For 3-D finite bodies with eccentric cracks subjected to shear loading, as shown in Fig. 8, a
series of new results are obtained. Some of the results are given in Figs 9-10. When f. = 0, the case

X
A W b
X
—_ S| ] 4 f; [4 -
N z C2 ¢
i b .
z
(a) Embedded crack (b) Surface crack

Fig. 8. Two typical cases. (a) Embedded crack. (b) Surface crack.
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Kn/r\/na
LIF f/b=04 a/c=05 /b=03
1.0k
p=0°
0.8F — ,=180°
0.6 p=45°
_/¢=135°
0.4F
0.2F
| ) L L L 014‘2 c/ b
0 0.1 0203 0405 06 07 4/¢
(a)
1.2k C/b=08 1/b=01 a/c=1
1.0F
p=0"°
08 = = 180°
0.6- @=45°
/g,,:]gj"
0.4F
0.2+
m M in m 01‘1 c/b
0 02 04 06 08 10 a/t
(c)
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Ky /wna
1.2+
1.0+ @=90°
0.8 o=d5°
e=135°
0.6
041
0.2
042 ¢/ b
L ! L L L L A
0 0.1 0203 040506 07 a/t
()
Ky /1N ra
1.2
1.0
0.8+
0.6/ ©=90°
p=45°
0.4% (P=]35°
0.21
0.1c/b
AL 1L i 1L .
0 02 04 06 08 10 a/t
(d)

Fig. 9. Stress intensity factors of shear modes for embedded eccentric crack.

degenerates into a symmetric one, and the results fit quite well with the existing ones, as shown in

Fig. 11.

7. Conclusions

From the above derivations and computations, the following conclusions can be obtained

(1) A Pythagorean theorem to show the relationship among the three-dimensional crack surface
displacements and the crack sliding displacements of longitudinal section and the crack tearing
displacements of transversal sections in the vicinity of the crack front can be established.
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Ky /wna Kp/ra
12| f£/b=03,a/c=11t/b=07 12k
Lor 10F
=0°
0.8+ @ . 08F
_/ =180 ©=90°
061 o=+ 0.6;/
_____/ =135 o
=45
0.2F o2k
0.7 ¢c/b 07 /b
L L L L i 1 i i 1
o 02 04 06 08 10 alt 0 02 04 06 08 10 a/:
(a) (b)
Ky /™ Kyp/wNma
12V fi/b=00 ¢ ¢=051/b=02 1.2 F
1.0F 1.0+ $=90°

o =0° ;/ o
0.8 @ 0.8 (,0=45

L =180

L , .6
0.6 o=45"° 0
/ Q= 135 °
0.4 F 0.4F
0.2+ 0.2
04c/b
1 L L L 0i4 c/b I L ' e
0 02 04 06 08 10 a/t 0 02 04 06 08 10a/t
(c) (d)

Fig. 10. Stress intensity factors of shear modes for surface eccentric crack.

The energy release rate method can be used to formulate a system of classical Bernouli’s
equation about the generalized 3-D crack surface displacements. The above equations can be
solved in closed form using the assumption of separation of variables.

Three assumptions used in this paper (generalized Young’s modulus, mode of crack surface
displacement and separation of variables) can be verified numerically.

The calculation is very time-saving, as the main work is only to calculate several integrals
numerically. For any given case, the stress intensity factors along the crack front can be
calculated within three seconds of C.P.U. time on IBM 4341. Hence a complete series of useful
results about the stress intensity factors can be obtained.

The results provided by this method are in nice agreement with those obtained by other
methods, in symmetric cases.
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Ky /wna Kyg /™na
1.0  Potential function method {3
This method

0.8 |-

0.6
c/81.0
c/8=0.6

0.41
c/e2=0.2

) 1
@ o /4 /2 %
(a)
| 25
=
/
/,co T
a
F—Zc——“ ‘
Kp/w™na Kyg /wVna
Alternating method (4]
1.0F 1.0 F This method
a/c=0.2

a/t=0.2, ¢/o=0
v=0.25

1
0 /4 /2 ® fo) 7/4 /2 b4
() Ky and Ky surface crack

Fig. 11. Comparison about results of this method and those of other methods. (a) Kj; and Kj;; of embedded crack
(completely fit with the exact results of potential function method for infinite bodies). (b) K;; and Ky, surface crack.
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(6) In general, the 3-D stress intensity factors can be obtained by energy release rate method, if
the stress intensity factors of the longitudinal and transversal sections in the 2-D case are
known.

Appendix. The crack surface displacement of 2-D cracks

Al. The in-plane sliding displacement of 2-D unsymmetric inner crack
Al.1. Analytical expressions

For plane problems in theory of elasticity, the stress and displacement components can be
obtained as follows:

Gy =i, = @' (2) +Q () +(z—2)0"(2) (AD)
2u(uc+in,) = kp(2) —Qz) — (z—2)¢'(2) (A2)

For an inner crack as shown in Fig. 1A, as the crack surface is traction-free, we have

M N
P = (=) P Y F2+ Y G
n=0

m=0
M _ N _
Q@) = (2—a) P Y F -y G (A3)
m=0 n=0
Let
B =[(?—a?)" Pz dz (A4)

Then, it can be obtained that

Bo =In(z+./z*—a*), B, =./z"—a*,

A &y

Fig. 1A. In-plane sliding.
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(A35)

n—1
n Oczﬂl172

n—1
Z2—612+

(A6)

So, f, can be written as follows:

t
Ba1 = Z bz_,-_mt_l(z?_a2)(2./71)/2
Jj=1
'
ﬂz’ = Z sz’zzz(ZZ_a2)(2_/7l)/2+b0’2t 11’1(2—'—\/22_7612)
j=1

where, b,;is a known constant obtained from the recurrence formula (A5).
From (A3), ¢(z) and Q(z) can be expressed as follows:
M N n+1

¢(Z) = Z legm(z)+ Z Gni
m=0 n=0 + 1
N _ Zn+1

G A7

Gy (A7)

(A8)

Q(Z) = ZO F_mﬁm(z) - £~
[M)2

in which
f F,.B.(2) = fo ln(z—l-\/ZZ_iaz)_i_ Z

& 2 2\(2t—1)/2 e 2 2\(21—1)/2
Sra(Z"—a )( —D2 4 Z fu(z"—a )( -
1 =1

(A9)

[M)2]
FZ_/"—let—l,Zf—l
=1

)

m=0
[M]2]
J

and
[M/2]
fo= 2 Foborp for= ) Fobrop for 1=
f=0 /=0
When M is even, [M/2] = M/2. When M is odd, [M/2] =(M+1)/2, for the summation of odd

terms: [M/2] =(M —1)/2, for the summation of even terms. Substituting (A7) and (A8) into (A2),

the complex displacement expression can be obtained in a series form

2u(uc+iuy) = fo{kIn(z+./2> —a* —In(z+./2° —a’)}

[M)2]
+ Z/: f2r—l {K(Z2 —612)(2[7 D2 _ (72 _a2)(2171)/’2}
t=1

(A10)

Zn+1 Z—n+1 }

n+l n+l

m=0

[M/2]
+ Z/: fz,{KZ(ZZ _a2)(2171)/2 _Z-(Z-z —(12)(217 1)/2}>
t=1
M _ N _ N
—(z—2) { Y F,(—=a)'Pz"+ ), an"}—l— Y G, {K
m=0 n=
The first term of the above equation is a multi-valued function. By means of single-valued condition
of displacement, f, = 0. Furthermore, when z changes from the upper surface of the crack to its
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lower surface, the crack opening and sliding displacements have the character of antisymmetric
discontinuity. So, there will be no G, terms. Then, the crack surface displacement can be expressed
as follows:

(ux + lu\) |crack surface

K41 (21 x2\@=D/2 2] ‘ X 2 \@=D/2
= { Y foa ! <1_az> + ) .fzzah; 1— 2 (ALl)
t=1

2,u t=1

where the first and second summation are the symmetric and antisymmetric parts of crack surface
displacement with respect to y-axis, respectively.

According to the principle of superposition, it can be proved that the above expression (Al1)
can be used to describe the crack surface displacement of the same plate subjected to surface
tractions along the crack surfaces which is corresponding to the load acting at the remote sides.

For an infinite plate subjected to uniform load, it is well known that, along the surface of the
crack,

K-l—l / % / j (A12)
K+1 a x? A13
Uy = 2u 5 2 ( )

For finite plates, more terms are needed. In this paper, we choose three terms.

The determination of the crack opening displacement u, was discussed in the Appendix of Wang
et al. (1990a). Similarly, we will discuss the crack sliding displacement w = u,.

Along the crack surface, the non-uniform shear load is assumed to be

T = 145(2) (A14)

The crack sliding displacement of the finite plate can be expressed as follows:

2\ 1/2 2\ 3/2
To a, a, X a, a, X
v () (-5) () 0-0)
2\1/2
+T°azh<‘“,“2><1—;> g (A15)

On the right-hand side of the above equation, the first kind of terms and second kind of terms are
used to denote the symmetric and antisymmetric displacements, respectively. f, g and 4 are unknown
functions.

From (A15), the crack sliding displacement at origin wy, is equal to

o ) ()

where
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F(Cl; 2) 2f<1 2) 29 <‘ “;) (A17)

Furthermore, the crack sliding displacement gradient at origin will be

d
Wy = — a2h< ! "2> (A18)

X t
d <Cl> (x/a)=0
Let

a, a, a, a, a, da
(3 (5) 1 (5)

Then substituting (A19) into (A15), we have

P () 0 5) e (2905
w=wy, <20 1—— 1 -2« 1——
tt a> 1t a’
X2 1,2x
+w02<1—2> - (A20)
a a

From (A20), the crack sliding displacement is determined by wy,, w,y, and a(a,/t, a,/t), and fur-
thermore they are determined by f(a,/t, a,/t), F(a,/t, a,/t) and h(a,/t, a,/t).

Al.2. Determination of f(a,/t, a,/t), F(a,/t, a,/t) and h(a,/t, a,/t)
Now, we are going to determine f(a,/t, a,/t), F(a,/t, a,/t) and h(a,/t, a,/t). In the vicinity of right

crack-tip, xz/a = 1 —r/a. In the vicinity of the left crack-tip, x,/a = — (1 —r/a). Then, from (A15),
it can be obtained that

)
sl 0)

On the other hand, in the vicinity of crack-tip, it is well known that

8 Ky
w(r) = ;f\ﬂ (A22)

It is assumed that the stress intensity factors are given and can be written as follows:

a, a
Kz = nr <1:[2> To/ Ttd
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[4) a
Ky =n. <;9;> ToN/ Tta (A23)

In the above expression, factors ng(a,/t, a,/t), n.(a,/t, a,/t) are given functions of a,/t and a,/t.
Substituting (A23) into (A22), and comparing the results with (A21), it can be obtained that

a, a, a, da, a, d,
f(z’t>: [’113 <I,Z>+’7L (Z’tﬂ/z (A24)
a, a, i a, a, a, a

So, we have
a, a 0 a, da a, da a, da
O€<t,[> = _’7R <t’t>+m <tal):|/2F<t7t> (A26)
To a, da
=—aF|—,— A2
Wo1 Ea <t > t) (A27)

a, a a, da a, a
Wo2 = Woi |:77R <;,;>—’7L <;,[2>:|/F<tls;> (A28)
_Wo2 _ i dry (4 dy a dy

When there is a crack propagation da, then from (A16) the increment of wy, will be

Woi

dwy, = L7da (A30)

where

L= 1+[dF<‘“,a2>/da}/F<‘“,az> (A31)
rt t ot

Now, it is only necessary to determine F(a,/t, a,/t) by energy release rate method. For a plate of
unit thickness with an inner crack, we assume that the virtual crack extension is a proportional
one. Then,

da =da, = da, (A32)

The total potential energy release rate is

dI1 Kir K7y ntga| L (a, a, , (ar a,
o - _ & @ & @ A
da <E+E E "\ )T (A33)

Then,




Q. Wang, X. Zhang | International Journal of Solids and Structures 36 (1999) 971-998 993

2.2 alt
TTod "a 5 a, a, 2 a, a, a
- _ i e @R () 4A A34
’ E<{f{ﬁ () (7)o ) (A3

t

On the other hand, according to the definition of total potential energy I1, we have

1= —r r w(x)s(x)dx (A3)5)

—a

Inserting (A15) into (A35) it can be obtained that

2tta’ a, a, a, a, a, a,
II = E {[2f<t,l>(ml—m3)+F<t,l ms +2h 7,7 n; (A36)

where,
10 $2\1/2 X 1 x2\3/2 X
= 1—— d— = - 1—— x)d—
nt 2[_1 ( a2> s(x) 7’ n; 2\[—1 ( a2> s(x) P
1! x*\'? x X
ny =2J1 <l—az> ;S(X)d; (A37)

Comparing (A34) and (A36), it can be known that

aft % % % % & *
PSRN PR | S Py A TG A LAY
1t 5 <a> o 1 11 11 t
N

t
n, a, a ny a, da,
—— =1 )2f—,—= | —2h|{—,— A38
<m3 >f<t’z> m; (Z’t) (A38)
To determine the constant A, let us consider the cracked plate of infinite width as the initial

condition. Under this condition, from eqn (A16), it can be known that F(a,/t,a,/t) is a finite
parameter when a/c — 0. So that

2
nm@F@ﬁ% (A39)
(ajty—0 [ l‘ [

and evidently

alt % * % * % %
T e I A A A W U A A A LA
@n=0 |~ t t t t t t t t t
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. a\’ a a, a, da
im, <t> ["R <m>i'h (m =0 (A40)

Then, from eqn (A38), it can be known that
A=0 (A41)
So,

_<%_1>.2f<¢h,az>_m2h<ag%> (A42)
m; ot M, t’t

In general, the crack sliding displacements can be expressed as follows:

N LCIRI e 2 A

where
n=2 0§ <Z> — 1 (Z)Z (A44)

A2. The anti-plane tearing displacement of 2-D case

Q=

(A43)

A2.1. The anti-plane tearing displacement of 2-D unsymmetric inner crack

For anti-plane problems in the theory of elasticity, the displacement and stress components can
be expressed as follows:

w=g(z)+g(2) (A45)
0. =g @) +g ()}, oy =inlg'(2)—g'(2)} (A406)
For an inner crack shown in Fig. 2A(a), as the crack surface is traction-free, we have
M N
g/(Z) :(22_612)7(1/2) Z P,,1Zm+ Z ann (A47)
m=0 m=0
and
M N Z”
g(2)= ) P+ . 0, (A48)
m=0 m=0 n+ 1

where, 7,,(z) can be obtained by recurrence formula also.
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@ 0 © 9 @F e o et

-
e~

(a) (o)

Fig. 2A. Anti-plane tearing.

Furthermore, by means of single-valued condition of displacements, the crack tearing dis-
placement of a finite plate can be expressed by three terms as follows:

2\ 1/2 2\3/2
T a, a, X a, a, X
= —ali2f|—,— || 1—— 29—, —|[1——
! 2“a{f<”l>< 612> +g<t’[>< a2> }

2\ 1/2
To a, a, X X
(L) 1-5) © 0 (A4
T (l’t>< a2> a AP

The first kind of terms and the second kind of terms are used to denote the symmetric and
antisymmetric displacements, respectively. f, ¢ and /# are unknown functions.

The generalized symmetric displacement wy, can be defined as the crack tearing displacement at
origin and from (A49), it is equal to

To [fadr ar a, a,
=—al2f|—,— |+29—,—

To a, a,
= Y aF (2t 22 AS50
Z,ua (Z’t) (A30)

where

R WP (IR A T R

Furthermore, the generalized antisymmetric displacement will be

dw Yo on (‘“‘”) (A52)

M2 =4 |, T 2m

Let
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a, da a, da a, da
—— | =fl—.,— —,— A
(05)(02) () a5y
Substituting (A50) to (A53) into (A49) it can be obtained that

a, a, x2\/? a, a, x2\*?
w=wo 20—, — (-] +|[1-2a|—,—|||{l——
t t a2 t t a2

2\ 1/2
X X
+wos (1 — 2) - (A54)
a a
It is assumed that the stress intensity factors are given, and can be written as follows:

a a
Kiir = 1r <;al2> To/ T
a, a
Ky, =11 <l‘l’tz> To/ ta (AS5)

Factors 7 and 7, are given functions of a,/t and a,/t.
From the relationship between the stress intensity factors and the crack tearing displacement in
the vicinity of the crack-tip, it can be obtained that

a, a, a, a, a, da
()52
a, a, a, a, a da
(55)= e (55 (2] 2

Then, we have

a, a, a, a, a, a,
Wo2 = Wor | R 7’7 —NL 7»7 F 7,7
a, a a, a a, a
{=woafwo, = [”IR <;:;>_’7L <;’;>:|/F<l‘l’l‘2> (AST)

For a plate of unit thickness, it can be assumed that the virtual crack extension is a proportional
one
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da =da, =da, = adyg (AS8)

Then, from the energy release rate method, we can obtain

a, a, n (! a fa a fa
F*i — 2 = S _ L 217 S _
(z’t) 2m3Lw[nR<tw+l,tw {>+11L<tco+[,tw {)]dw
m, a, a, ny a, a
(P ) () = P (2} (As9
120 5) (%) o

10! X2\1/2 X 10 $2\3/2 X
=— 1—— d— =— 1— d—
m 2J1 ( az> s(x) 2’ ni; 2[} < a2> s(x) a

1! x2\!/2 X X
ny =2J 1 (1—a2> S(X)Ed; (A60)

So the crack tearing displacement can be obtained

e ) ) 1) T

where

n=2 p <z> —1- (Z)Z (A62)

A2.2. The anti-plane tearing displacement of 2-D edge crack

Now let us consider the plate with edge crack. The stress and displacement states of a plate with
a Mode III edge crack can be described by means of the states of a symmetric plate with a Mode
IIT inner crack, as shown in Fig. 2A(a). As the shear stress field is symmetric with respect to the
symmetric line, as shown in Fig. 2A(a), it can be known that there is not shear stress component
7., along the symmetric line. So we can separate the plate along the symmetric line into two parts,
each part can be considered as a plate with an edge crack as shown in Fig. 2A(b). The crack tearing
displacement of the plate with an edge crack as shown in Fig. 2A(b) is the same with that of the
plate with an inner symmetric crack.

Then, the crack tearing displacement can be expressed as follows:

IR OILCIR

where
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X x\?
o))
a a a
(1)) ()
n (f) = Kll/"«'o\/a
(3) =z ] (G oo G 1) )
To a
Wy = 2,uF<t> (A64)
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