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Abstract

In this paper\ a new analytical!engineering method of closed form solution about stress intensity factors
of shear modes for 2!D _nite bodies with eccentric cracks is derived by means of the energy release rate
method and relevant given 1!D stress intensity factors[ This method is both accurate and e.cient[ Hence a
complete series about useful new results of stress factors KII and KIII can be obtained[ Þ 0887 Elsevier
Science Ltd[ All rights reserved[
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0[ Introduction

The 2!D stress intensity factors are very important controlling parameters in linear elastic
fracture mechanics[ Exact solutions of the 2!D stress intensity factors can only be obtained for
in_nite bodies with embedded cracks[ There are several approximate methods of solution for _nite
bodies\ but unfortunately\ all of them are very time!consuming[ Therefore\ there are very few
results about 2!D eccentric crack problems\ especially for the case of shear modes[

In Wang et al[ "0889a\ b#\ new analytical!engineering methods to obtain the closed form solution
for stress intensity factors of mode I about eccentric cracks\ and closed form solution for stress
intensity factors of mode II and III about non!eccentric cracks were advanced\ respectively[ In this
paper\ the theory is extended\ and a closed form solution about stress intensity factors of shear
modes for 2!D _nite bodies with eccentric cracks is derived by means of energy release rate method[

The procedure of solution can be summarized as follows]

� Corresponding author[
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"0# To determine the 1!D crack sliding and crack tearing displacements with given 1!D stress
intensity factors KII and KIII\ respectively\ by means of energy release rate method[

"1# To establish the modes of 2!D crack surface displacement by given 1!D ones\ with condition
of displacement compatibility[

"2# To establish the relationship between 2!D stress intensity factors "KII and KIII# and generalized
2!D crack surface displacements by means of near _eld stress and displacement expressions[

"3# To determine the generalized 2!D crack surface displacement and the 2!D stress intensity
factors with energy release rate method[

For the convenience of understanding\ the third and fourth steps are discussed at _rst\ and then
the _rst and second ones[

1[ 2!D stress intensity factors and crack surface displacement

Figure 0 shows a 2!D cracked body subjected to shear load[ Two kinds of sections would be
introduced] transversal sections parallel to the xÐy plane and longitudinal sections parallel to yÐz
plane as shown in Fig[ 1[ It can be assumed that the crack surface displacement is along the same
direction with shear load acting on crack surfaces perpendicular to the y!axis and can be expressed
into the following pattern

w"x\ z# � w90h0"x\ z#¦w91h1"x\ z# "0#

w1"x\ z# � w9iw9jHij"x\ z# "1#

where\ h0"x\ z# and h1"x\ z# are symmetric and anti!symmetric distribution functions of crack surface
displacements corresponding to anti!symmetric and symmetric crack surface shear displacements\

Fig[ 0[ A three!dimensional _nite body with eccentric crack[
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Fig[ 1[ The cross!section containing a eccentric elliptical crack[

respectively\ w90 and w91 are the corresponding generalized crack surface displacements "ampli!
tudes# corresponding to h0"x\ z# and h1"x\ z#\ respectively[ Furthermore\

Hij"x\ z# � hi"x\ z#hj"x\ z# "2#

where\ Hij"x\ z# are products of distribution functions and which equals to zero along the crack
front and has second derivatives in the vicinity of the crack front[

It must be emphasized that Hij is a symmetric function when i � j\ and Hij is an antisymmetric
function when i � j[

If P"x0\ z0# is an arbitrary point on the crack front\ then in the vicinity of point P\ the square of
crack surface displacement w1"x\ z# can be expanded into Taylor|s series\ and the higher terms can
be neglected[ So\ we have

w1"x\ z# � w9iw9j 6
1Hij

1x b"x0\z0#

"x−x0#¦
1Hij

1z b"x0z0#

"z−z0#7
� w1"x\ z0#¦w1"x0\ z# "3#

w1"x0\ z# � w9iw9j 6
1Hij

1z b"x0\z0#

"z−z0#7 "4#

w1"x\ z0# � w9iw9j 6
1Hij

1x b"x0\z0#

"x−x0#7 "5#

where\ w"x\ z0# is the anti!plane crack tearing displacement "CTD# of the transversal section\ and
w"x0\ z# is the in!plane crack sliding displacement "CSD# of the longitudinal section passing through
the same point P[ Equation "3# can be called the Pythagorean theorem of the crack surface
displacement[

As shown in Fig[ 2\ a normal slice can be introduced\ and the crack surface displacement can be
separated into two components] the in!plane CSD w = cos c and the anti!plane CTD w = sin c[ In
the vicinity of an arbitrary point P"x0\ z0# on the crack front\ the two components can be expressed
by means of corresponding stress intensity factors as follows]

w1 cos1 c �
7K1

II

pE1
n

r\ w1 sin1 c �
1K1

III

pm1
r "6#
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Fig[ 2[ The crack surface displacement of a normal slice separated into two components[

w cos c �X
7
p

KII

En

zr\ w sin c �X
1
p

KIII

m
zr "7#

where\ En is the generalized Young|s modulus of the normal slices and can be expressed by
following equality

En � E¦"E0−E# f"c#^ E0 � E:"0−n1#^ f"c# $ ð9\ 0Ł "8#

n is Poisson|s ratio\ and m is the shear modulus

m �
E

1"0¦n#
"09#

For a plate with an embedded fully elliptical crack\ every normal slice can be assumed in a state
of plane strain\ then we have f"c# � 0[ For a plate with a surface semi!elliptical crack\ the stress
state of the normal slice varies from plane stress at c � 9 to plane strain at c � p:1[ So it can be
assumed that f"c# � sin c[

From eqns "6# and "3#\ it can be obtained that

K1
II � −

p

7
E1

nw9iw9j 6
1Hij

1x
sin c¦

1Hij

1z
cos c7p

cos1 c

�
p

7
E1

n w9iw9j limr:9

0
r
ðHij"x\ z0#¦Hij"x0\ z#Ł cos1 c "00#

K1
III � −

p

1
m1w9iwoj 6

1Hij

1x
sin c¦

1Hij

1z
cos c7p

sin1 c

�
p

1
m1w9iw9j limr:9

0
r
ðHij"x\ z0#¦Hij"x0\ z#Ł sin1 c "01#

So\ KII and KIII can be obtained\ if amplitudes w9i and products of distribution functions Hij are
determined[
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2[ Basic differential equation

To determine the displacement amplitudes w9i\ the increment of potential energy dP during
crack growth should be studied[ According to the principle of superposition\ the load acting on
the boundary of the body can be transferred onto the surface of the crack and can be expressed as
t � t9s"x\ z#\ where t9 is the generalized force\ and s"x\ z# is the load distribution function[ The
potential energy of a linear elastic cracked body will be

P � −gA

tw dA � −t9pac"w90B0¦w91B1#

� −t9pacw90B "02#

where\ A is the crack area and

B0 �
0

pac gA

s"x\ z# = h0"x\ z# dA

B1 �
0

pac gA

s"x\ z# = h1"x\ z# dA

B � B0¦w91B1:w90 "03#

The crack front is assumed to be elliptical with semi!axis a and c parallel to x and z axes\
respectively[ To determine w90 and w91\ two kinds of virtual crack extension are considered\ and
the increment of potential energy dP during crack growth should be studied[

"a# Proportional extension[

The virtual proportional extension of the crack can be expressed by

da � a d`0\ dc � c d`0 "04#

as shown in Fig[ 3"a#[
Now\ G is used to represent the energy release rate of an arbitrary normal slice with unit

thickness along crack front[ It is well known that

G �
0
En

K1
II¦

0
1m

K1
III "05#

Then\ the energy release of the three!dimensional cracked body is

dP � −gs

G dr ds "06#

where\ s is the crack front\ dr and ds are used to represent the amount of crack extension and the
thickness of the normal slice\ respectively[ Then

ds � zc1 sin1 8¦a1 cos1 8 d8\ dr �"da# sin 8 sin c¦"dc# cos 8 cos c "07#
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sin c �
c sin 8

za1 cos1 8¦c1 sin1 8
\ cos c �

a cos 8

za1 cos1 8¦c1 sin1 8
"08#

In the above two equations\ 8 is the parametric angle of the elliptical crack front[
So\ after substituting eqns "00#\ "01#\ "05#\ "07# and "08# into eqn "06#\ with consideration of the

symmetric and antisymmetric characters of Hii and Hij "i � j#\ dP will be transformed into
following pattern

d P � −gs

G dr ds

� − s
1

i�0

p

7
E0w

1
9iac 6

I�i
a

¦
J�i
c 7 d`− s

1

i�0

p

3
mw1

9iac 6
I��i
a

¦
J��i
c 7 d` "19#

where

I�i � a gs

En

EI

lim
r:9

0
r
Hii"x\ z0# cos1 c d8

� −a gs

En

EI

1Hii

1x b"x0\z0#

sin c cos1 c d8

I��i � a gs

lim
r:9

0
r
Hii"x\ z0# sin1 c d8

� −a gs

1Hii

1x b"x0\z0#

sin2 c d8

J�i � c gs

En

EI

lim
r:9

0
r
Hii"x0\ z# cos1 c d8

� −c gs

En

EI

1Hii

1z b"x0\z0#

cos2 c d8

J��i � c gs

lim
r:9

0
r
Hii"x0\ z# sin1 c d8

� −c gs

1Hii

1z b"x0\z0#

cos c sin1 c d8 "10#

In the above equations\ repetitions of subscripts do not mean summation with respect to it[
Taking the di}erential of "02# and comparing it with "19#\ the _rst di}erential equation about

w90 and w91 can be obtained[

1w90

1`0

¦01¦
0
B

1B
1`01w90 � s

1

i�0 $
E0

7t9B 0
I�i
a

¦
J�i
c 1¦

m

3t9B 0
I �i
a

¦
J��i
c 1%w1

9i "11#
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Fig[ 3[ Two kinds of virtual crack extensions[

"b# Rigid translation along the z axis[

The virtual rigid translation of the crack along the z axis can be expressed by

da � dc � 9^ dfz � fz d`1 "12#

as shown in Fig[ 3"b#[
With the same procedure as "a#\ the second di}erential equation about w90 and w91 can be

established

1w90

1`1

¦0
0
B

1B
1`11w90 � $

E0

3t9B 0
M�
a

¦
N�
c 1¦

m

1t9B 0
M��

a
¦

N��
c 1%w90w91

fz
c

"13#

where\

M� � a gs

En

E0

lim
r:9

0
r
H01"x\ z0# cos 8 cos1 c d8

� −a gs

En

E0

1H01

1x b"x0\z0#

sin c cos 8 cos1 c d8

M�� � a gs

lim
r:9

0
r
H01"x\ z0# cos 8 sin1 c d8

� −a gs

1H01

1x b"x0\z0#

sin2 c cos 8 d8

N� � c gs

En

E0

lim
r:9

0
r
H01"x0\ z# cos 8 cos1 c d8

� −c gs

En

E0

1H01

1z b"x0\z0#

cos2 c cos d8 d8
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N�� � c gs

lim
r:9

0
r
H01"x0\ z# cos 8 sin1 c d8

� −c gs

1H01

1z b"x0\z0#

cos c cos 8 sin1 c d8 "14#

Now\ there are two non!linear di}erential equations "11# and "13# of _rst!order about w90 and w91\
and the closed form solutions of them are to be established[

3[ Closed form solution

Let

z � w91:w90

I� � I�0¦z1I�1 J� � J�0¦z1J�1

I�� � I��0¦z1I��1 J�� � J��0¦z1J��1 "15#

After substitution\ eqn "11# will be transformed into the following

1w90

1`0

¦01¦
0
B

1B
1`01w90 � $

E0

7t9B 0
J�
a

¦
J�
c 1¦

m

3t9B 0
I��
a

¦
J��
c 1%w1

90 "16#

To obtain the closed form solution of w90\ two extreme cases are studied previously[
"0# a:c : 9[ c : �[ Let

I��0I � lim
"a:c#:9

I��0\ I��10 � lim
"a:c#:9

I��1\ I��I � lim
"a:c#:9

I��\ "17#

B0I � lim
"a:c#:9

B0\ B1I � lim
"a:c#:9

B1\ BI � lim
"a:c#:9

B "18#

w90I � lim
"a:c#:9

w90\ zI � lim
"a:c#:9

z "29#

From eqn "08# it can be seen that sin c � 0 and cos c � 9\ so that from eqn "10#\ we have
I�i � 9

In this extreme case\ the crack can be considered as a through!width one\ as shown in Fig[ 4\
then

Fig[ 4[ Cracked section with a:c : 9[
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zI0 � 9\ I��I � I��0I\ BI � B0I "20#

So\ eqn "16# becomes a di}erential equation of Bernouli|s type[ The solution is

0
w90I

� e1`0BI 6−
m

3t9 g
`0

9

0

B1
I

I��I
a

e−1`�
I d`�I¦D07\

DI �
0

w90IBI b`0�9

"21#

From the Appendix\ it can also be obtained that

w90I �
t9

1m
aF 0

a
t
\ 91 "22#

"1# c:a : 9[ a : �[ Let

J�0II � lim
"c:a#:9

J�0\ J�1II � lim
"c:a#:9

J�1\ J�II � lim
"c:a#:9

J�\ "23#

B0II � lim
"c:a#:9

B0\ B1II � lim
"c:a#:9

B1\ BII � lim
"c:a#:9

B\ "24#

w90II � lim
"c:a#:9

w90\ zII � lim
"c:a#:9

z\ "25#

From eqn "08#\ it can be seen that sin c � 9 and cos c � 0\ so that from eqn "10#\ we have
J��i � 9[

In this case\ the crack can be considered as a through!thickness one which is unsymmetric with
respect to the axis\ as shown in Fig[ 5\ then

zII � z�\ J�II � J�0II¦z�1J�1II BII � B0II¦z�B1II "26#

where z� is the ratio of w91 and w90 in the case of 1!D through the thickness crack\ and can be
found from the Appendix[

So\ eqn "16# also becomes a di}erential equation of Bernouli|s type[ The solution is

Fig[ 5[ Cracked section when c:a : 9[
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0
w90II

� e1`0BII 6−
E0

7t9 g
`0

9

0

B1
II

J�II
c

e−1`� d`�¦D17
D1 �

0
w90IIBII b`0�9

"27#

From the Appendix\ it can also be obtained that

w90II �
t9

E
cF 0

c
b

\
fz
b1 "28#

Let

I � I�¦
1m

E0

I��\ J � J�¦
1m

E0

J�� "39#

For the case of arbitrary a:c\ an assumption of variable separation can be made as follows]

I¦
a
c
J

B1
� m 0

a
c
\
t
b1

1m

E0

I��I
B1

I

¦n 0
c
a
\
b
t1

a
c

J�II
B1

II

�
1m

E0

m 0
a
c
\
t
b1

I��0I

B1
0I

¦n 0
a
c
\
b
t1

a
c
"J�II¦z�1J�1II#:"B�0II¦z�B�1II# "30#

where m"a:c\ t:b# and n"c:a\ b:t# can be determined by least square method in symmetric cases[ The
above assumption can be veri_ed numerically[

After substitution\ eqn "16# will be transformed into the following

1w90

1`0

¦01¦
0
B

1B
1`01w90 �

B
7t9 $m 0

a
c
\
t
b1

1m

a
I��I
B1

I

¦n 0
c
a

\
b
t1

EI

c
J�II
B1

II%w1
90 "31#

The above equation is a special case of classical Bernouli|s equation[ The solution of eqn "31# is

0
w90

� e1`0B 6−
0

7t9 g
`0

9 $m 0
a
c
\
t
b1

1mI��0
aB1

I

¦n 0
a
c
\
b
t1

E0

c
J�II
B1

II% e−1`�0 d`�0¦D7 "32#

where\ D �"0:w90B# =g�9[
Comparing eqn "32# with "21# and "27#\ and considering the state function property of w90\ we

have

0
w90

� m 0
a
c
\
t
b1

B
w90IBI

¦n 0
c
a

\
b
t1

B
w91IIBII

D � mD0

B
BI

¦nD1

B
BII

"33#

So\ the closed form solution of w90 is obtained as shown in eqn "33#[
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From "13#\ z will be equal to

z �

−
1

1`1 0
0

w90B1
E0

3t9B
1 0

M�¦
1m

E0

M��

a
¦

N�¦
1m

E0

N��

c 1
fz
c

"34#

To simplify the expression of z\ the above two extreme cases should be considered once more]

"0# a:c � 9[

From eqn "34#\ we have\

zI �

−
1

1`1 0
0

w90IBI1
E0

3t9B
1
I

=

M�I¦
1m

E0

M��I

a
=
fz
c

"35#

"1# c:a : 9[

From eqn "34#\ we have

zII �

−
1

1`1 0
0

w90IIBII1
E0

3t9B
1
II

=

N�II¦
1m

E0

N��II

c
=
fz
c

"36#

Substituting eqn "33# into eqn "34#\ and considering eqns "35# and "36#\ it can be obtained that

z �

m 0
a
c
\
t
b1

MI

a
zI¦n 0

c
a

\
b
t1

NII

c
zII

M
a

¦
N
c

"37#

where

M � M�¦
1m

E0

M��\ N � N�¦
1m

EI

N��

MI � M�I¦
1m

E0

M��I\ NII � N�II¦
1m

E0

N��II "38#

Substituting eqns "20# and "26# into "37#\ we have
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z � n 0
a
c
\
b
t1 =

a
c
NII

M¦
a
c
N

z�1 "49#

Finally\ the closed form solution of w9i are obtained\ as shown in eqns "33# and "49#[ If the
modes of the crack surface displacement are known\ KII and KIII can be calculated from eqns "00#
and "01#[

4[ Modes of crack surface displacements

It can be assumed that\ the symmetric and anti!symmetric modes of crack surface displacement
of each section about 2!D cracked body are the same as those of a corresponding 1!D cracked
plate with the same geometrical con_guration and the same type of load distribution along the
crack surface\ respectively\ given in the Appendix[

Let A"x9\ z9# be an arbitrary point in the crack area as shown in Fig[ 6[ If w0"z9\ x# and w1"x9\ z#
are 1!D crack surface displacements "shown in the Appendix# used to express the crack surface
displacements w"x\ z9# and w"x9\ z# of transversal and longitudinal sections about a 2!D cracked
body\ respectively\ then from "A32# and "A52# we have

w"x\ z9# � w0"z9\ x#

� w900"z9# 6n0a0 0
a?
t 1 $b0 0

x
a?1%

0:1

¦$0−n0a0 0
a?
t 1% $b0 0

x
a?1%

2:1

7 "40#

w"x9\ z# � w1"x9\ z#

� w910"x9# 6n1a1 0
c?0
b

\
c?1
b 1 $b1 0

z
c?1%

0:1

¦$0−n1a1 0
c?0
b

\
c?1
b 1% $b1 0

z
c?1%

2:1

7
¦w911"x9# $b1 0

z
c?1%

0:1 z
c?

"41#

Fig[ 6[ Transversal and longitudinal sections[
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where\ w900 is the generalized crack surface displacements of transversal section through point
A"x9\ z9#[ w910 and w911 are the generalized crack surface displacements of longitudinal section
through point A"x9\ z9# also for the symmetric and antisymmetric case\ respectively[ ni and bi can
be found from the Appendix\ and we have

n0 � 1\ b0 0
x
a1� 0−

x1

a1
\ for embedded crack

n0 � 3\ b0 0
x
a1� 0−

x
a

\ for surface crack

n1 � 1\ b1 0
z
c1� 0−

z1

c1
"42#

To satisfy the requirements about compatibility between crack surface displacements of trans!
versal sections and those of longitudinal ones along the x!axis and z!axis\ the following equalities
must be valid

w0"z\ 9# � w1"9\ z#

w0"9\ x# � w1"x\ 9#

d
dz

w0"z\ x# bz�9

�
d
dz

w1"x\ z# bz�9

"43#

Substituting eqn "40# and eqn "41# into eqn "43#\ it can be obtained that

w900"z# � w90 6n1a1 0
c0

b
\
c1

b 1 $b1 0
z
c1%

0:1

¦$0−n1a1 0
c0

b
\
c1

b 1% $b1 0
z
c1%

2:1

7
¦w91 $b1 0

z
c1%

0:1 z
c

w910"x# � w90 6n0a0 0
a
t1 $b0 0

x
a1%

0:1

¦$0−n0a0 0
a
t1% $b0 0

x
a1%

2:1

7 "44#

w911"x# � w91 6n0a0 0
a
t1 $b0 0

x
a1%

0:1

¦$0−n0a0 0
a
t1% $b0 0

x
a1%

2:1

7 "45#

Then\ we have

w0"z\ x# � w90h00"z\ x#¦w91h01"x\ z#

w1"x\ z# � w90h10"x\ z#¦w91h11"x\ z# "46#

where\
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h00"x\ z# � 6n0a0 0
a?
t 1 $b0 0

x
a?1%

0:1

¦$0−n0a0 0
a?
t 1% $b0 0

x
a?1%

2:1

7
×6n1a1 0

c0

b
\
c1

b 1 $b1 0
z
c1%

0:1

¦$0−n1a1 0
c0

b
\
c1

b 1% $b1 0
z
c1%

2:1

7
h01"x\ z# � 6n0a0 0

a?
t 1 $b0 0

x
a?1%

0:1

¦$0−n0a0 0
a?
t 1% $b0 0

x
a?1%

2:1

7 $b1 0
z
c1%

0:1 z
c

h10"x\ z# � 6n0a0 0
a
t1 $b0 0

x
a1%

0:1

¦$0−n0a0 0
a
t1% $b0 0

x
a1%

2:1

7
×6n1a1 0

c?0
b

\
c?1
b 1 $b1 0

z
c?1%

0:1

¦$0−n1a1 0
c?0
b

\
c?1
b 1% $b1 0

z
c?1%

2:1

7
h11"x\ z# � 6n0a0 0

a
t1 $b0 0

x
a1%

0:1

¦$0−n0a0 0
a
t1% $b0 0

x
a1%

2:1

7 $b1 0
z
c?1%

0:1 z
c?

"47#

Hij"x\ z0# � h0i"x\ z0#h0j"x\ z0#

Hij"x0\ z# � h1i"x0\ z#h1j"x0\ z# "48#

hi"x\ z# � ðh0i"x\ z#¦h1j"x\ z#:1 "59#

Substituting Hij and h0 into the expressions of w9i\ KII and KIII\ the stress intensity factors KII

and KIII can be obtained[

5[ Results

For 2!D _nite bodies with eccentric cracks subjected to shear loading\ as shown in Fig[ 7\ a
series of new results are obtained[ Some of the results are given in Figs 8Ð09[ When fz � 9\ the case

Fig[ 7[ Two typical cases[ "a# Embedded crack[ "b# Surface crack[
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Fig[ 8[ Stress intensity factors of shear modes for embedded eccentric crack[

degenerates into a symmetric one\ and the results _t quite well with the existing ones\ as shown in
Fig[ 00[

6[ Conclusions

From the above derivations and computations\ the following conclusions can be obtained

"0# A Pythagorean theorem to show the relationship among the three!dimensional crack surface
displacements and the crack sliding displacements of longitudinal section and the crack tearing
displacements of transversal sections in the vicinity of the crack front can be established[
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Fig[ 09[ Stress intensity factors of shear modes for surface eccentric crack[

"1# The energy release rate method can be used to formulate a system of classical Bernouli|s
equation about the generalized 2!D crack surface displacements[ The above equations can be
solved in closed form using the assumption of separation of variables[

"2# Three assumptions used in this paper "generalized Young|s modulus\ mode of crack surface
displacement and separation of variables# can be veri_ed numerically[

"3# The calculation is very time!saving\ as the main work is only to calculate several integrals
numerically[ For any given case\ the stress intensity factors along the crack front can be
calculated within three seconds of C[P[U[ time on IBM 3230[ Hence a complete series of useful
results about the stress intensity factors can be obtained[

"4# The results provided by this method are in nice agreement with those obtained by other
methods\ in symmetric cases[
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Fig[ 00[ Comparison about results of this method and those of other methods[ "a# KII and KIII of embedded crack
"completely _t with the exact results of potential function method for in_nite bodies#[ "b# KII and KIII surface crack[
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"5# In general\ the 2!D stress intensity factors can be obtained by energy release rate method\ if
the stress intensity factors of the longitudinal and transversal sections in the 1!D case are
known[

Appendix[ The crack surface displacement of 1!D cracks

A0[ The in!plane sliding displacement of 1!D unsymmetric inner crack

A0[0[ Analytical expressions

For plane problems in theory of elasticity\ the stress and displacement components can be
obtained as follows]

syy−isxy � 8?"z#¦V?"z#¦"z−z¹#8ý"z# "A0#

1m"ux¦iuy# � k8"z#−V"z#−"z−z¹#8¹ ?"z# "A1#

For an inner crack as shown in Fig[ 0A\ as the crack surface is traction!free\ we have

8?"z# � "z1−a1#−"0:1# s
M

m�9

Fmzm¦ s
N

n�9

Gnz
n

V?"z# � "z1−a1#−"0:1# s
M

m�9

FÞmzm− s
N

n�9

GÞnz
n "A2#

Let

bm � Ð"z1−a1#−"0:1#zm dz "A3#

Then\ it can be obtained that

b9 � ln"z¦zz1−a1#\ b0 � zz1−a1\

Fig[ 0A[ In!plane sliding[
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bn �
zn−0

n
zz1−a1¦

n−0
n

a1bn−1 "A4#

So\ bn can be written as follows]

b1t−0 � s
t

j�0

b1j−0\1t−0"z1−a1# "1j−0#:1

b1t � s
t

j�0

b1j\1tz"z1−a1# "1j−0#:1¦b9\1t ln"z¦zz1−a1# "A5#

where\ bij is a known constant obtained from the recurrence formula "A4#[
From "A2#\ 8"z# and V"z# can be expressed as follows]

8"z# � s
M

m�9

Fmbm"z#¦ s
N

n�9

Gn

zn¦0

n¦0

V"z# � s
M

m�9

FÞmbm"z#− s
N

n�9

GÞn

zn¦0

n¦0
"A6#

in which

s
M

m�9

Fmbm"z# � f9 ln"z¦zz1−a1#¦ s
ðM:1Ł

t�0

f1t−0"z1−a1# "1t−0#:1¦ s
ðM:1Ł

t�0

f1t"z1−a1# "1t−0#:1 "A7#

and

f9 � s
ðM:1Ł

f�9

F1fb9\1f\ f1f � s
ðM:1Ł

f�9

F1fb1t\1f\ f1f−0 � s
ðM:1Ł

j�0

F1f−0b1t−0\1f−0 "A8#

When M is even\ ðM:1Ł � M:1[ When M is odd\ ðM:1Ł �"M¦0#:1\ for the summation of odd
terms] ðM:1Ł �"M−0#:1\ for the summation of even terms[ Substituting "A6# and "A7# into "A1#\
the complex displacement expression can be obtained in a series form

1m"ux¦iuy# � f9"k ln"z¦zz1−a1−ln"z¹¦zz¹1−a1##

¦ s
ðM:1Ł

t�0

f1t−0"k"z1−a1# "1t−0#:1−"z¹1−a1# "1t−0#:1#

¦ s
ðM:1Ł

t�0

f1t"kz"z1−a1# "1t−0#:1−z¹"z¹1−a1# "1t−0#:1#

−"z−z¹# 6 s
M

m�9

FÞm"z¹1−a1#0:1z¹m¦s
N

n�

GÞnz¹
n7¦ s

N

m�9

Gn 6k
zn¦0

n¦0
−

z¹n¦0

n¦07 "A09#

The _rst term of the above equation is a multi!valued function[ By means of single!valued condition
of displacement\ f9 � 9[ Furthermore\ when z changes from the upper surface of the crack to its
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lower surface\ the crack opening and sliding displacements have the character of antisymmetric
discontinuity[ So\ there will be no Gn terms[ Then\ the crack surface displacement can be expressed
as follows]

"ux¦iuy# =crack surface

�
k¦0
1m 6 s

ðM:1Ł

t�0

f1t−0a
1t−0 00−

x1

a11
"1t−0#:1

¦ s
ðM:1Ł

t�0

f1ta
1t x

a 00−
x1

a11
"1t−0#:1

7 "A00#

where the _rst and second summation are the symmetric and antisymmetric parts of crack surface
displacement with respect to y!axis\ respectively[

According to the principle of superposition\ it can be proved that the above expression "A00#
can be used to describe the crack surface displacement of the same plate subjected to surface
tractions along the crack surfaces which is corresponding to the load acting at the remote sides[

For an in_nite plate subjected to uniform load\ it is well known that\ along the surface of the
crack\

ux �
k¦0
1m

t =
a
1X 0−

x1

a1
�

t

E
aX 0−

x1

a1
"A01#

uy �
k¦0
1m

s =
a
1X 0−

x1

a1
�

s

E
aX 0−

x1

a1
"A02#

For _nite plates\ more terms are needed[ In this paper\ we choose three terms[
The determination of the crack opening displacement uy was discussed in the Appendix of Wang

et al[ "0889a#[ Similarly\ we will discuss the crack sliding displacement w � ux[
Along the crack surface\ the non!uniform shear load is assumed to be

t � t9s"z# "A03#

The crack sliding displacement of the _nite plate can be expressed as follows]

w �
t9

E
a 61f 0

a0

t
\
a1

t 1 00−
x1

a11
0:1

¦1` 0
a0

t
\
a1

t 1 00−
x1

a11
2:1

7
¦

t9

E
a1h 0

a0

t
\
a1

t 1 00−
x1

a11
0:1 x

a
"A04#

On the right!hand side of the above equation\ the _rst kind of terms and second kind of terms are
used to denote the symmetric and antisymmetric displacements\ respectively[ f\ ` and h are unknown
functions[

From "A04#\ the crack sliding displacement at origin w90 is equal to

w90 �
t9

E
a $1f 0

a0

t
\
a1

t 1¦1` 0
a0

t
\
a1

t 1%�
t9

E
aF 0

a0

t
\
a1

t 1 "A05#

where
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F 0
a0

t
\
a1

t 1� 1f 0
a0

t
\
a1

t 1¦1` 0
a0

t
\
a1

t 1 "A06#

Furthermore\ the crack sliding displacement gradient at origin will be

w91 �
dw

d 0
x
a1 n"x:a#�9

�
t9

E
a1h 0

a0

t
\
a1

t 1 "A07#

Let

a 0
a0

t
\
a1

t 1� f 0
a0

t
\
a1

t 1>F 0
a0

t
\
a1

t 1 "A08#

Then substituting "A08# into "A04#\ we have

w � w90 61a 0
a0

t
\
a1

t 1 00−
x1

a11
0:1

¦$0−1a 0
a0

t
\
a1

t 1% 00−
x1

a11
2:1

7
¦w91 00−

x1

a11
0:1 x

a
"A19#

From "A19#\ the crack sliding displacement is determined by w90\ w91 and a"a0:t\ a1:t#\ and fur!
thermore they are determined by f"a0:t\ a1:t#\ F"a0:t\ a1:t# and h"a0:t\ a1:t#[

A0[1[ Determination of f"a0:t\ a1:t#\ F"a0:t\ a1:t# and h"a0:t\ a1:t#

Now\ we are going to determine f"a0:t\ a1:t#\ F"a0:t\ a1:t# and h"a0:t\ a1:t#[ In the vicinity of right
crack!tip\ xR:a � 0−r:a[ In the vicinity of the left crack!tip\ xL:a � −"0−r:a#[ Then\ from "A04#\
it can be obtained that

wR �
t9

E
a1z1r $f 0

a0

t
\
a1

t 1¦h 0
a0

t
\
a1

t 1%
wL �

t9

E
a1z1r $f 0

a0

t
\
a1

t 1−h 0
a0

t
\
a1

t 1% "A10#

On the other hand\ in the vicinity of crack!tip\ it is well known that

w"r# �X
7
p

KII

E
zr "A11#

It is assumed that the stress intensity factors are given and can be written as follows]

KIIR � hR 0
a0

t
\
a1

t 1 t9zpa
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KIIL � hL 0
a0

t
\
a1

t 1 t9zpa "A12#

In the above expression\ factors hR"a0:t\ a1:t#\ hL"a0:t\ a1:t# are given functions of a0:t and a1:t[
Substituting "A12# into "A11#\ and comparing the results with "A10#\ it can be obtained that

f 0
a0

t
\
a1

t 1� $hR 0
a0

t
\
a1

t 1¦hL 0
a0

t
\
a1

t 1%> 1 "A13#

h 0
a0

t
\
a1

t 1� $h` 0
a0

t
\
a1

t 1−hL 0
a0

t
\
a1

t 1%> 1 "A14#

So\ we have

a 0
a0

t
\
a1

t 1� $hR 0
a0

t
\
a1

t 1¦hL 0
a0

t
\
a1

t 1%:1F 0
a0

t
\
a1

t 1 "A15#

w90 �
t9

E
aF 0

a0

t
\
a1

t 1 "A16#

w91 � w90 $hR 0
a0

t
\
a1

t 1−hL 0
a0

t
\
a1

t 1%>F 0
a0

t
\
a1

t 1 "A17#

z �
w91

w90

� $hR 0
a0

t
\
a1

t 1−hL 0
a0

t
\
a1

t 1%>F 0
a0

t
\
a1

t 1 "A18#

When there is a crack propagation da\ then from "A05# the increment of w90 will be

dw90 � L
w90

a
da "A29#

where

L � 0¦$dF 0
a0

t
\
a1

t 1> da%>F 0
a0

t
\
a1

t 1 "A20#

Now\ it is only necessary to determine F"a0:t\ a1:t# by energy release rate method[ For a plate of
unit thickness with an inner crack\ we assume that the virtual crack extension is a proportional
one[ Then\

da � da0 � da1 "A21#

The total potential energy release rate is

dP
da

� −0
K1

IIR

E
¦

K1
IIL

E 1� −
pt1

9a
E $h1

R 0
a0

t
\
a1

t 1¦h1
L 0

a0

t
\
a1

t 1% "A22#

Then\
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P � −
pt1

9a
1

E 0
a
t1

1 6g
a:t

9

a
t $h1

R 0
a0

t
\
a1

t 1¦h1
L 0

a0

t
\
a1

t 1% d 0
a
t1¦D7 "A23#

On the other hand\ according to the de_nition of total potential energy P\ we have

P � −t9 g
a

−a

w"x#s"x# dx "A24#

Inserting "A04# into "A24# it can be obtained that

P �
1t1

9a
1

E 6$1f 0
a0

t
\
a1

t 1"m0−m2#¦F 0
a0

t
\
a1

t 1 = m2%¦1h 0
a0

t
\
a1

t 1 = n07 "A25#

where\

m0 �
0
1 g

0

−0 00−
x1

a11
0:1

s"x# d
x
a

\ m2 �
0
1 g

0

−0 00−
x1

a11
2:1

s"x# d
x
a

n0 �
0
1 g

0

−0 00−
x1

a11
0:1 x

a
s"x# d

x
a

"A26#

Comparing "A23# and "A25#\ it can be known that

F 0
a0

t
\
a1

t 1�
p

1m2 = 0
a
t1

1 6g
a:t

9

a�
t $h1

R 0
a�0
t

\
a�1
t 1¦h1

L 0
a�0
t

\
a�1
t 1% d

a�
t

¦D7

−0
m0

m2

−01 = 1f 0
a0

t
\
a1

t 1−
n0

m2

= 1h 0
a0

t
\
a1

t 1 "A27#

To determine the constant D\ let us consider the cracked plate of in_nite width as the initial
condition[ Under this condition\ from eqn "A05#\ it can be known that F"a0:t\ a1:t# is a _nite
parameter when a:c : 9[ So that

lim
"a:t#:9 0

a
t1

1

F 0
a0

t
\
a1

t 1� 9 "A28#

and evidently

lim
"a:t#:9 g

a:t

9

a�
t $hR 0

a�
t

¦
f
t
\
a�
t

−
f
t1¦hL 0

a�
t

¦
f
t
\
a�
t

−
f
t1% d

a�
t

� 9
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lim
"s:t#:9 0

a
t1

1

$hR 0
a0

t
\
a1

t 12hL 0
a0

t
\
a1

t 1%� 9 "A39#

Then\ from eqn "A27#\ it can be known that

D � 9 "A30#

So\

F 0
a0

t
\
a1

t 1�
p

1m2 g
0

9

v $h1
R 0

a
t
v¦

f
t
\
a
t
v−

f
t1¦h1

L 0
a
t
v¦

f
t
\
a
t
v−

f
t1% dv

−0
m0

m2

−01 = 1f 0
a0

t
\
a1

t 1−
n0

m2

1h 0
a0

t
\
a1

t 1 "A31#

In general\ the crack sliding displacements can be expressed as follows]

w � w90 6na 0
a0

t
\
a1

t 1 $b 0
x
a1%

0:1

¦$0−na 0
a0

t
\
a1

t 1% $b 0
x
a1%

2:1

7¦w91 $b 0
x
a1%

0:1 x
a

"A32#

where

n � 1\ b 0
x
a1� 0−0

x
a1

1

"A33#

A1[ The anti!plane tearing displacement of 1!D case

A1[0[ The anti!plane tearin` displacement of 1!D unsymmetric inner crack

For anti!plane problems in the theory of elasticity\ the displacement and stress components can
be expressed as follows]

w � `"z#¦¹̀ "z¹# "A34#

szx � m"`?"z#¦¹̀?"z¹##\ sxy � im"`?"z#−¹̀?"z¹## "A35#

For an inner crack shown in Fig[ 1A"a#\ as the crack surface is traction!free\ we have

`?"z# �"z1−a1#−"0:1# s
M

m�9

Pmzm¦ s
N

m�9

Qnz
n "A36#

and

`"z# � s
M

m�9

Pmgm"z#¦ s
N

m�9

Qn

zn

n¦0
"A37#

where\ gm"z# can be obtained by recurrence formula also[
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Fig[ 1A[ Anti!plane tearing[

Furthermore\ by means of single!valued condition of displacements\ the crack tearing dis!
placement of a _nite plate can be expressed by three terms as follows]

w �
t9

1m
a 61f 0

a0

t
\
a1

t 1 00−
x1

a11
0:1

¦1` 0
a0

t
\
a1

t 1 00−
x1

a11
2:1

7
¦

t9

1m
a1h 0

a0

t
\
a1

t 1 00−
x1

a11
0:1 x

a
"A38#

The _rst kind of terms and the second kind of terms are used to denote the symmetric and
antisymmetric displacements\ respectively[ f\ q and h are unknown functions[

The generalized symmetric displacement w90 can be de_ned as the crack tearing displacement at
origin and from "A38#\ it is equal to

w90 �
t9

1m
a $1f 0

a0

t
\
a1

t 1¦1` 0
a0

t
\
a1

t 1%
�

t9

1m
aF 0

a0

t
\
a1

t 1 "A49#

where

F 0
a0

t
\
a1

t 1� 1f 0
a0

t
\
a1

t 1¦1` 0
a0

t
\
a1

t 1 "A40#

Furthermore\ the generalized antisymmetric displacement will be

w91 � a
dw
d"x# bx�9

�
t9

1m
a1h 0

a0

t
\
a1

t 1 "A41#

Let
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a 0
a0

t
\
a1

t 1� f 0
a0

t
\
a1

t 1>F 0
a0

t
\
a1

t 1 "A42#

Substituting "A49# to "A42# into "A38# it can be obtained that

w � w90 61a 0
a0

t
\
a1

t 1 00−
x1

a11
0:1

¦$0−1a 0
a0

t
\
a1

t 1% 00−
x1

a11
2:1

7
¦w91 00−

x1

a11
0:1 x

a
"A43#

It is assumed that the stress intensity factors are given\ and can be written as follows]

KIIIR � hR 0
a0

t
\
a1

t 1 t9zpa

KIIIL � hL 0
a0

t
\
a1

t 1 t9zpa "A44#

Factors hR and hL are given functions of a0:t and a1:t[
From the relationship between the stress intensity factors and the crack tearing displacement in

the vicinity of the crack!tip\ it can be obtained that

f 0
a0

t
\
a1

t 1� $hR 0
a0

t
\
a1

t 1¦hL 0
a0

t
\
a1

t 1%> 1

h 0
a0

t
\
a1

t 1� $hR 0
a0

t
\
a1

t 1−hL 0
a0

t
\
a1

t 1%> 1 "A45#

Then\ we have

a 0
a0

t
\
a1

t 1� $hR 0
a0

t
\
a1

t 1¦hL 0
a0

t
\
a1

t 1%> 1F 0
a0

t
\
a1

t 1
w90 �

t9

1m
aF 0

a0

t
\
a1

t 1
w91 � w90 $hR 0

a0

t
\
a1

t 1−hL 0
a0

t
\
a1

t 1%>F 0
a0

t
\
a1

t 1
z � w91:w90 � $hR 0

a0

t
\
a1

t 1−hL 0
a0

t
\
a1

t 1%>F 0
a0

t
\
a1

t 1 "A46#

For a plate of unit thickness\ it can be assumed that the virtual crack extension is a proportional
one
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da � da0 � da1 � a d` "A47#

Then\ from the energy release rate method\ we can obtain

F 0
a0

t
\
a1

t 1�
p

1m2 g
0

9

v $h1
R 0

a
t
v¦

f
t
\
a
t
v−

f
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So the crack tearing displacement can be obtained
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where
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A1[1[ The anti!plane tearin` displacement of 1!D ed`e crack

Now let us consider the plate with edge crack[ The stress and displacement states of a plate with
a Mode III edge crack can be described by means of the states of a symmetric plate with a Mode
III inner crack\ as shown in Fig[ 1A"a#[ As the shear stress _eld is symmetric with respect to the
symmetric line\ as shown in Fig[ 1A"a#\ it can be known that there is not shear stress component
tzx along the symmetric line[ So we can separate the plate along the symmetric line into two parts\
each part can be considered as a plate with an edge crack as shown in Fig[ 1A"b#[ The crack tearing
displacement of the plate with an edge crack as shown in Fig[ 1A"b# is the same with that of the
plate with an inner symmetric crack[

Then\ the crack tearing displacement can be expressed as follows]
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where

n � 1
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